Enterprise Protected Infrastructure Example

&E AW Cloud

React.js Container on AWS ECS

£o2
¢

% % Browser

TailwindCSS

React Cognito CloudTrail

API
Requests
ET

G
Response
Websocket pooiest P C\\

Elastic Container Registry

CloudWatch

A 4 A 4 A 4

Node.js Container on AWS ECS

(N
N\

Node Express Postgres on RDS

This project serves as a foundational example of an architecture that can be expanded upon to
create large-scale enterprise applications. It is designed with scalability, maintainability, and
extensibility in mind, utilizing a set of modern technologies and AWS services to provide a robust,
scalable, and event-driven environment. This architecture can be tailored and expanded to meet
the unigue requirements of a variety of applications, making it an ideal starting point for developers
building complex solutions. Below, we highlight the key features, technologies, and AWS services
leveraged in this architecture.

Hosted Project: http://apploadbalancer-6149276-228010628.us-east-1.elb.amazonaws.com/about

Project Features
Frontend:

o React: User interface, written in JavaScript and styled using TailwindCSS to provide a
responsive and modern design.

http://apploadbalancer-6149276-228010628.us-east-1.elb.amazonaws.com/about

 WebSockets: Real-time messaging for features like chat functionality, notifications, and
collaborative interactions.

e AWS Cognito: Client authentication, including email confirmations, MFA, and password
management.

Backend:

* Node.js & Express.js: Backend written in TypeScript, with REST API endpoints and secure
CORS implementation.

o JWT Authentication: Secure and scalable stateless authentication.

Database:

» PostgreSQL: Reliable and efficient database for handling complex queries with features like
indexing, transactions, and data consistency.

Hosting and Deployment:

o AWS ECS: Hosting both frontend and backend applications with automatic scaling based on
demand.

Event-Driven Architecture:

e AWS CloudTrail, EventBridge, and Lambda: Automates user onboarding, processes
events, and keeps data consistent across components.

Infrastructure as Code (laC):

« Pulumi: Efficient, repeatable, and maintainable infrastructure provisioning written in
TypeScript for seamless integration with application code.

GitHub Repositories

e Frontend Repository- Complete React-based frontend code.
o Backend Repository- Node.js backend code with REST APIs and JWT authentication.
e Infrastructure Repository- Pulumi scripts for provisioning infrastructure.

https://github.com/dabarbarian125/sample-front-end
https://github.com/dabarbarian125/sample-back-end
https://github.com/dabarbarian125/sample-infrastructure

