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CHAPTER 1

I ntroduction

This introduction describes major trends in the studies. The trends were derived from the summaries given
in the next chapter. An appendix briefly describes the studies surveyed.

| use the definitions given in [IEEE83]. An error is a mistake made by a person. An error manifests itself
as one or more faults in some text, such as a requirements document or a program. Faults may be detected
by direct observation (in, say, a code read), or they may be found by observing the failures they cause.
One fault may cause severa failures. (Or it may cause none.)

1. Resultsfrom theLiterature

This section summarizes various studies of faults from the literature. Because there are no standard ways
of categorizing or describing fault data, detailed comparisons are not possible. However, certain trends
appesr:

Faultsin programming logic (path selection) are common.

Many studies [Dniestrowski 78], [Potier82], [Lipow79], and [Motley77] find that faults in the programming
logic (the decisions made by the program/design) are the single largest type of fault. [Rubey75] doesn't
find it as high, but notes that those faults tend to be serious, as does [Glass81]. However, notice that this
category isthe smallest in [Basili87] -- perhaps because the application area was quite well understood.

Faults of omission are important.

In general, most faults were caused by doing the wrong thing (faults of commission); fewer were caused by
failing to do something (faults of omission). However, [Glass81], who studied only faults found after
delivery, says that omitted logic is the most likely fault to survive. He characterizes omitted logic as "code
not as complex as required by the problem" -- that is, missing code (not just bool ean operations).

The distribution of faults of commission and omission is not uniform. [Basili84a] finds that most interface
faults were omissions. Data handling faults were overwhelmingly faults of commission, as were computa-
tion faults. [Ostrand84] found that most data definition faults were commission, data handling was bal-
anced, and that 81% of faults associated with decisions were omitted code.

Data handling is more error-prone than computation.

Data handling faults are high in [Basili87] and [Glass81] (especially if you include initialization), and of
middling frequency in [Rubey75], [Basili84d] (high if you include initialization), [Potier82], [Lipow79],
[Motley77], and [Ostrand84]. They are of low frequency in no studies. Contrarily, computation faults
(arithmetic, boolean expressions) are of low to middle frequency.

Satic and dynamic detection are equally effective.

Most surveys found a rather even split between faults detected by dynamic testing (executing the program)
and static analysis (typically code reads and walkthroughs). The conventional wisdom (that programmers
are less effective than independent testers at testing their own code) is borne out.

Modified modules are no more error-prone than new modules.

All three studies that considered the matter reported that the fault density of new and changed modules was
the same. [Basili84a)] reports that the fault types differ, though.

Thereis evidence that both small and large modules are more error-prone than medium-sized modul es.

Both [Basili84a] and [Shen85] note that smaller modules have higher fault rates. [Withrow90] confirmed
this result, but also found that the fault rate then rose as modules became larger. The minimum rate was at
about 251 lines/ module for this sample of Ada programs.

-2- Fault Surveys



-3- Fault Surveys

No conclusions about development phases are possible.
The percentage of faults caused during coding ranges from a high of 83% to alow of 26%.
In abstract descriptions, beware of incorrectness, omissions, and inconsistencies, in that order.

In requirements / functional specifications, both [Bell76] and [Basili81] show that incorrect statements are
most common, followed by omissions, followed (distantly) by inconsistencies. [Basili81] reports that
inconsistencies took the longest to fix, followed by incorrect facts, followed by omissions.

Bug fixes cause a small number of new bugs.
The percentage of bugs caused by changes is low, around 10%.



CHAPTER 2

2. Cross-Phase Summary Data
There were, in general, two sorts of categorizations. categorizations that span phases in the development

process and categorizations within phases. This section describes the first.

Details

[Dniestrowski78] gives the following faults for a "weak complexity" (largely arithmetic/boolean expres-
sions) module with module with 3445 source instructions and a "great complexity" (real-time management,
I/O drivers, etc.) module of 3475 source instructions.

Notes:
«y
)

Weak complexity Great complexity

Fault Totals | Percentages | Totals | Percentages
Arithmetic or Boolean Expression 3 4% 1 1%
Programming Logic 24 32% 56 50%
Software Interfaces 3 4% 8 7%
Data Declarations 19 25% 13 12%
Interrupt Handling 0 0% 7 6%
Hardware Interface 0 0% 11 10%
Documentation Standards 20 27% 9 8%
Realtime monitor interactions 1 1% 1 1%
I/O operations 1 1% 1 1%
Miscellaneous 4 5% 5 1%

Categories like "programming logic" are applied to designs and specifications in the original paper.
One category is missing from the original table; | assumeit is"miscellaneous’.

Fault Surveys
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In [Rubey75], it's not always clear what phase an error ismadein, so | present all the data here.

Fault Category Total | Serious | Moderate | Minor
Incomplete or erroneous specification 28% 11% 17% 43%
Intentional deviation from specification 12% 5% 13% 14%
Violation of programming standards 10% 1% 5% 17%
Erroneous data accessing 10% 21% 15% 2%
Erroneous decision logic or sequencing 12% 24% 17% 3%
Erroneous arithmetic computations 9% 13% 15% 3%
Invalid timing 4% 8% 5% 1%
Improper handling of interrupts 4% 8% 6% 0%
Wrong constants and data values 3% 8% 4% 1%
Inacurate [program] documentation 8% 0% 2% 16%
Total 100% 14% 40% 46%
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[Weiss79] presents the following:

Fault Category Number | Percent
Requirements 8 6%
Design (excluding interfaces) 27 19%
Interface 9 6%
Coding specifications [detailed design] 18 13%
Language 12 8%
Coding standards 3 2%
Careless omission 14 10%
Clerica 52 36%

NOTES:

(1) Inall save clerical errors and careless omissions, the faults is a misunderstanding. For example, a
"Language" fault might be a misunderstanding of a Fortran construct.

(2) Detailed design was done by writing in a high level language (e.g., Bliss or an Algol-like language)
and trandating into Fortran.

(3) A sample careless omission would be an omitted declaration.

[Basili84a)] has faults divided up among two axes. Thefirst axisisa set of fault categories:

(1) Initidlization: failuretoinitiaize or reinitialize a data structure properly upon a modul€’ s entry/exit.
(2) Control: faultsthat caused an incorrect path to be taken.

(3) Interface: incorrect use of a structure existing outside of the module’s local environment.

(4) Data: incorrect use of adatavalue (wrong variable, wrong subscripts, etc.)

(5) Computation.

The second axis is faults of commission vs. faults of omission. A fault of commission is, for example, an
incorrect executable statement. Forgetting to include some entity within a module would be a fault of
omission.

Commission Omission Total
New | Modified | New | Modified | New | Modified | Percent
Initialization 2 9 5 9 7 18 11%
Control 12 2 16 6 28 8 16%
Interface 23 31 27 6 50 37 39%
Data 10 17 1 3 11 20 14%
Computation 16 21 3 3 19 24 19%

Totals were 64% faults of commission, 35% omission. In [Basili87], the spread was 76% commission,
22% omission. (This is fewer omissions than average for his studies, perhaps because of a high level of
codereuse.) In[Basili85d], the spread was 48% commission, 52% omission.
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Data from [Ostrand84] can be reported in a similar way. For all the faults, 43% were incorrect (commis-
son), 54% of the faults were omissions, and 1% of the faults were due to superfluous code. This table
shows the breakdowns for coding faults:

Commission | Omission | Superfluous code

Data definition 68% 32% 0%
Data handling 50% 45% 5%
Decision 35% 65% 0%
Decision plus processing 3% 97% 0%

[Basili87] also produced this fault categorization:

Category Percentage
Control 13%
Global Data Interface 13%
Other Interface 20%
Data 30%
Computation 16%

[Potier82] reports the following for their study and two others:

category [Potier82] | [Lipow79] | [Motley77]
computational 6% 9% 9%
logic 38% 26% 26%
110 2% 14% 16%
data handling 15% 18% 18%
interface 19% 16% 17%
data definition 19% 3% 1%
data base 1% 7% 4%
others 0% 7% 9%
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[Glass1] reports this data:

category Project A | ProjectB | Tota
Omitted logic (existing code too simple) 36 24 60
Failure to reset data 17 6 23
Regression fault 5 12 17
Documentation in error (software correct) 10 6 16
Requirements inadequate 10 1 11
Patch in error 0 11 11
Commentary in error 0 11 11
If statement too simple 9 2 11
Referenced wrong data variable 6 4 10
Data alignment error 4 3 7
Timing fault causes data loss 3 3 6
Failuretoinitialize data 4 1 5

(Note that some faults fall in more than one category.)

The most likely fault to survive is omitted logic -- code not as complex as required by the problem. (A typ-
ical sort of fault of this type would be "if (A)" when a correct test would be "if (A and B)".) Such errors
are made in the detailed design or coding phase. [Ostrand84] reports that, for faults involving a decision,
81% were due to omitted code and 19% were due to incorrect code.

[Ostrand84] presents the following:

Fault Category Number | Percent
Data definition -- code which defines data 56 32%
Data handling -- code which initializes or stores data 38 22%
Decision (alone) -- branching code 31 18%
Decision & Processing -- branching code plus executed body 32 18%
System -- program'’ s environment 12 7%
Documentation 2 1%
Unknown 2 1%
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[Perry85] and [Perry87] concentrate on interface faults. Multi-file interface faults require changes to a
header file or more than one file, whereas single-file interface faults require changes to only one file. 36%
of faults were multi-file interface faults; 33% were single-file interface faults.

Fault Category Multi-file | Single-file | Weighted Average
Data 18.8% 10.2% 14.7%
Functionality 18.8% 14.3% 16.7%
Error Handling 18.8% 22.5% 20.5%
Construction 12.9% 2.0% 7.7%
Inadequate Postprocessing 10.6% 10.2% 10.4%
Interface Misuse/Support 10.6% 24.5% 17.2%
Timing/Performance 4.7% 0.0% 2.5%
Coordination 4.7% 16.3% 10.3%

Data faults included data structures of inadequate size or with missing fields, initialization faults, and viola-
tion of data constraints. Functionality faults included assumptions that some unprovided function was pro-
vided, disagreements about location of function, and changes or additions because of changing needs.
Error handling included both improper or missing error handling and also additions because of changes in
other units. Construction faults are related to problems with the interface and implementation (typically
associated with #include files). Inadequate postprocessing usually means failure to free working memory.
Interface misuse/support includes interface misunderstanding, an interface that did not fully support its
specified function, and hardware interfaces. Coordination faults occurred because not al modules requir-
ing an update were changed.
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3. Phase Data

Many of these studies predate [IEEE83], so each may mean something different by "requirements
specification”. My best effort was to relate the data to the following definitions, which are close to the
| EEE definitions.

The requirements specification describes what the system must do. The functional specification describes
what the system does. It is a complete definition of the observable behavior and interface of the system
(what the customer can see). It is an extension of the requirements, in that it provides more details and
perhaps more function. ([IEEE83] provides several variant kinds of specifications.)

The specification is refined in terms of successively more detailed designs. Conventionaly, the first is
called the architectural design. It provides the first level decomposition of the system by bresaking it into
components. (In [IEEE83] terms, it provides the framework for the system.) It should provide a complete
functional specification for the components. The last of the designs is the detailed design, which is
sufficiently complete to be implemented.

The following table shows the faults from the different studies, broken down into phases. Because of the
difficulty in mapping phases, I’ ve also lumped al pre-coding faults into the "ALL" category. The numbers
don’t add up to 100% for all studies because of "miscellaneous” categories and faults that were not related
to phases.

Req. | Func. Spec. | Arch. | Det.Des. | ALL | Coding
[Boehm75] avg 64 64 36
[Boehm75] max 73.7 | 73.7 26.3
[Boehm75] min 356 | 356 64.4
[Endres75] 46 46 38
[Rubey75] 40 40 60
[Schooman75] 4 10 14 71
[Dniestrowski78] WC 4 30 34 66
[Dniestrowski78] GC 30 30 70
[Herndon78] 19 19 58
[Potier82] 95 26.1 31.8 67.4 28.1
[Ostrand84] 14 79
[Perry85] 318 68.2
[Perry87] 16.3 83.7

Notes:

(1) For [Boehm75], | report the average for al 5 projects and also the two extremes. It’'s interesting to
note is that the project with the greatest percentage of design faults was the largest, and the project
with the fewest was the smallest. However, the trend doesn’t hold for the three other projects.

(2) For [Rubey75], "specification" might mean anything prior to coding. Some of the coding faults
might actually be design faults.

(3) For [Dniestrowski78], WC means a module with "weak complexity" (largely arithmetic and boolean
expressions), whereas GC means "great complexity” (real-time management, 1/O drivers, etc).

(4) For [Potier82], I've put "design specifications' under detailed design, though they may apply to
architectural design. Their "requirements definition” likely describes a great deal of the functional
interface, so those faults might also fall into the specification category.

[Basili84a] has to be reported separately because coding and detailed design faults are lumped together.
(This is perhaps due to the development environment, in which there was not always a separate detailed
design document -- see [Weiss85] -- but it may also be because, as [Glass81] points out, it's often difficult
to classify faults into one or the other.) The same is true of the SEL1, SEL2, and SEL 3 projects reported
on in [Weiss85], except that coding faults may also appear in the architectural design (design of more than
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one component).t

Req. | Func. Spec. | Arch. | Det. Des.
[Basili84a] planning 19 44 75 225
[Basili84a] support 5 3 10 72
[Weiss85] SEL 1 2 14 7 67
[Weiss85] SEL2 5 3 4 78
[Weiss85] SEL3 6 5 24 57

Notes:

(1) In[Basili84al, the large number of specification faults is taken to be "due to the fact that the reused
modules were taken from another system with a different application. Thus, even though the basic
algorithms were the same, the specification was not well-enough defined or appropriately defined for
the modules to be used under dlightly different circumstances’. The other, better understood, support
application shows a different distribution.

(2) In[Weiss85]/[Basili87], the large number of single-component faults may be caused by the inexperi-
ence of the personnel.

3.1. Requirements/Specification/Ar chitectural Design Faults

[Basili81] reports on faults made in requirements specification, a document which describes external inter-
faces, dataitems, and functions. The fault categories were as follows:

Fault categories (excluding clerical)
Total | Externa Interfaces | Functions
(Data Items)
Ambiguity 5% 7% 4%
Omission 31% 41% 21%
Inconsistency 13% 15% 7%
Incorrect Fact 49% 33% 68%
Information in wrong section 2% 4% 0%
Implementation Fact Included 0% 0% 0%
Other 0% 0% 0%
In [Endres75], we have these kinds of specification or high-level design faults:
Total Specification 46%
Machine configuration and architecture 10
Dynamic behavior/communication between processes 17
Functions offered 12
Output listings and formats 3
Diagnostics 3
Performance 1

More data is given on some of the categories in the paper. They’re well worth examining closaly.

[Bell76] describes these kind of faults in a requirements specification. (Note: this covers only the second
review described in their paper, which is more representative of a mature process.)

1 Perhaps. [Basili87] and [Weiss85] both report on the SEL 2 data, but use slightly different descriptions of the categories.
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Reguirement not in current baseline 15
(akind of added requirement)
Requirement out of scope (added 7.2
requirement not in scope of con-

tract)

Missing/incomplete/inadequate 21.0
Incorrect 34.8
Inconsistent/incompatible 9.1

New or changed requirement 7.2
(Another kind of added require-

ment)
Requirement unclear 9.3
Typos 9.9
[Dniestrowski 78] breaks down faults into phases. These are the specification faults.
Weak complexity Great complexity
Fault Totals | Percentages | Totals | Percentages
Arithmetic or Boolean Expression 0 0% 0 0%
Programming Logic 2 67% 0 0%
Software Interfaces 0 0% 0 0%
Data Declarations 1 33% 0 0%
Interrupt Handling 0 0% 0 0%
Hardware Interface 0 0% 0 0%
Documentation Standards 0 0% 0 0%
Realtime monitor interactions 0 0% 0 0%
I/O operations 0 0% 0 0%
Miscellaneous 0 0% 0 0%

[Bell76] cites a study that says as many as 12% of faults found during testing may be attributable to
requirements/specification faults. The same study shows that the most common fault (8.0 - 17.8%) was
missing logic -- "some logic needed as part of a successful design solution to requirements were missing”,
probably related to incomplete requirements.



3.2. Detailed Design Faults

In [Boehm75], design faults clustered around interfaces to the world (tapes, cards, disks, users), fault mes-

sage processing, and database interface.

[Dniestrowski78] reports
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Weak complexity Great complexity
Fault Totals | Percentages | Totals | Percentages
Arithmetic or Boolean Expression 4 17% 0 0%
Programming Logic 7 30% 5 15%
Software Interfaces 0 0% 1 3%
Data Declarations 1 4% 6 18%
Interrupt Handling 0 0% 5 15%
Hardware Interface 0 0% 11 32%
Documentation Standards 7 30% 4 12%
Realtime monitor interactions 1 1% 1 3%
I/O operations 1 4% 0 0%
Miscellaneous 2 9% 1 3%
3.3. Coding Faults
[Endres75] reports that, of the 38% of errors due to coding:

Total Coding 38%

Initialization 8

Addressahility 7

Reference to names 7

Counting and calculating 8

Masks and comparisons 2

Estimation of range limits 1

Placing of instructions within a module / bad fixes 5

Again, there isa more detailed breakdown in the paper.




-14- Fault Surveys

[Dniestrowski78]
Weak complexity Great complexity

Fault Totals | Percentages | Totals | Percentages
Arithmetic or Boolean Expression 1 2% 1 1%
Programming Logic 15 29% 51 65%
Software Interfaces 3 6% 7 9%
Data Declarations 17 33% 7 9%
Interrupt Handling 0 0% 2 3%
Hardware Interface 0 0% 0 0%
Documentation Standards 13 25% 5 6%
Realtime monitor interactions 0 0% 0 0%
I/O operations 0 0% 1 1%
Miscellaneous 2 4% 4 5%

(1) "Programming logic fault represents 31% of the faults for a [weak complexity] code and goes up to
50% of the faults for [great complexity] code.”

(2) "Nearly 70% of the faults are introduced during the coding phase."

3.4. TestingErrors
[Herndon78] reports that 10% of errors were tester errors due to invalid test procedures.

[Ostrand84] reports that 3 of 174 change reports were generated because an independent tester mistakenly
reported a bug.

4. When Faults are Detected

In [Boehm75], 54% of faults were caught during or after acceptance test. Of these, 9% were coding, 45%
were design.

In [Ostrand84], we have these detection times:

Coding 5%
Unit Testing by developers 30%
Function Testing by testing group 61%
System Testing of product-product interfaces by testing group 2%

Unit testing tended to discover data handling faults (faults in changing or initializing variables). Function
testing tended to discover data definition and decision problems. This is probably because the latter faults
tended to be related to problems with the specification -- the programmers who tested their own code found
their simple mistakes, but did not find their misunderstandings. The independent testing team did.

5. How Faults are Detected

The following table shows faults discovered either by static inspections (code reads, walkthroughs, etc.) or
dynamic tests (executing the code).

Project Static | Dynamic
[Rubey75] 44% 56%
[Schooman75] 55% 45%
[Dniestrowski 78] WC 70% 30%
[Dniestrowski78]GC 50% 50%
[Weiss79] 29% 40%

NOTES:
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(1) [Dniestrowski78] says, "Manual inspection detects nearly 70% of the errors for a [weak complexity]
code. But the detection percentage falls to 50% for a [great complexity] code. This is consistent
with the fact that the latter is very time dependent which is a difficult aspect to check by paper work
analysis."

(2) The 29% [Weiss79] reports for static inspections should be considered a lower bound. Note, how-
ever, that al but one of the inspection bugs were easy to fix, whereas many more of the execution
faults were hard to fix or of medium difficulty. (Question: is this because inspections found trivial
bugs or because finding the bug is most of the trouble of fixing it?)

(3) 31% of [Weiss79] faults were discovered by other means, such as the Fortran compiler, preproces-
sor, etc. (Note: many other studies did not include such automatically-detected faults.)

(4) Thefollowing table shows how [Weiss79] inspections detected faults:

Detection method Percent of total faults
The original programmer in "con- 5%
sidering his program”.
A "quality control" inspection by 17%
someone other than the origina
programmer.
Inspection by someone other than 5%
the original programmer for some
purpose other than quality control.
During trandation from 2%
specifications to code

(5) Of the faults detected by execution in [Weiss79], 43% involved access to particular complex data
structures. Built-in error detection discovered 56% of these. (But two of the fourteen were faults
associated with the error handling code itself.)

6. Refixing Bugs
[Basili8l] discovered that 6% of changes were to correct or complete a previous change, 85% were fault
corrections, and 9% were for other reasons.

In [Weiss85], they report that between 2.5% and 6.1% of all changes result in an fault. (Between 5% and
14% of the non-clerical faults resulted from a change.)

7. Changed Modules
[Endres75] discovered that the fault density is the same for new and modified code.

In [Basili844], of fault containing modules (roughly, subroutines) 49% were modified and 51% were new.
Both new and changed modules have a high rate of interface faults. "New modules have a equal number of
errors of omission and commission and a higher percentage of control errors. Modified modules had a high
percentage of errors of commission and a small percentage of errors of omission with a higher percentage
of data and initialization errors. Another difference was that modified modules appeared to be more sus-
ceptible to errors due to the misunderstanding of the specifications.”

[Shen85] aso reports that new assembly language modules are not significantly more or less error-prone
than modified modules. (New modules are significantly more error-prone than modules translated from
another language.)

8. Severity of Faults
Both [Rubey75] and [Herndon78] divide faults into three categories:
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Category | [Herndon78] | [Rubey75]
Low | 19% 46%
Medium | 50% 40%
High | 31% 14%

Notes:

(1) However, they have somewhat different definitions: To [Rubey75], "Serious" faults cause crashes or
"signicant" deviation from the correct values. "Moderate" faults caused lesser deviations. The end
user noticed no effect because of "minor" faults. To [Herndon78], low means "minor irregularities”,
medium means "unsatisfactory operation”, and high means that the system does not function.

(2) If you refer to the earlier [Rubey75] table, you'll see that that specification faults seem less serious
than coding faults.

9. Correction Times

[Basili8l] finds that inconsistency faults in a requirements specification had highest average time to fix,
incorrect facts were next, omissions were next, and all others took less than an hour.

In [Weiss85], it was noted that requirements changes were not particularly troublesome, even if a project
had relatively many of them. [Weiss79] discovered fewer requirements faults, but they were harder.

Both [Weiss85] and [Weiss79] report that interface faults were not especially troublesome.

[Weiss79] reports that al but one of the medium or hard difficulty faults were discovered in the last 10% of
development (mostly integration testing).

[Ostrand84] reports that most problems were isolated and corrected in less than an hour. 8% of faults took
more than a day to isolate; 3% of the faults took more than a day to correct. Faults found in function test-
ing (whole system testing) were easier to isolate but harder to fix than faults found in unit testing.
Specification faults were easier to isolate but harder to fix than programmer faults.

10. Faultsand Modules

Both [Endres75] and [Basili844a] report that most faults caused the change of only one module. (85% for
Endres; 89% for Basili.)

11. Faultsand Complexity

[Basili84a] has an interesting result: a higher fault rate for small modules. It may be because of the
predominance of interface faults. The same result was aso noted by [Shen85], who guess that it may be
because of interface faults, because more care is taken in coding large modules, and perhaps because there
are more undetected faults in large modules. [Withrow90] confirmed this result for a sample of Ada pro-
grams, but also discovered that the error density rose again for modules with more than 251 lines.

In [Basili844], the average complexity (McCabe's metric) of error-prone modules was no greater than the
average complexity of the full set of modules. [Potier82] found that the McCabe metric did correlate to
faults found, but only because of a correlation between size of procedure and error-proneness. When size
was factored out, McCabe did not predict well. (This may also be the case in [Schneidewind79.]) Other
structural measures (reachability, number of paths) correlated well, as did software science measures.

[Shen85] reports that the number of operands (variables and constants) was the best predictor of faults.
This number was highly correlated to the number of decisions (branches, conjunctions, disunctions,
boolean negations, and so on). They also report that the number of faults in changed modules is better
predicted by overall module metrics, rather than by metrics associated with the change alone. Perhaps
many errors are caused by interactions between the fixed and changed parts.

Note: | have not made an explicit survey of work on complexity metrics. See, for example, [Basili8sb] or
[Kafura35].



12. Fault Type Clustering
[Potier82] identified which kinds of faults were associated with which parts of the compiler:
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function fault categories
pre-compiler logic
lexical analyzer interface, 1/0
syntactic analyzer interface, 1/0
syntactic analyzer (2) | all categories
semantic analyzer interface, 1/0
pre-generation interface, 1/0
optimizer interface, 1/0
register alocation data handling
optimization computational, data base
data generation data handling
code generation data definition

They further break faults down into the phase in which they were made. (These are numbers, not percen-

tages):

requirements | spec | design | coding
computational 0 2 19 24
logic 18 70 129 81
I/10 0 3 0 4
data handling 2 17 49 54
interface 42 38 40 31
data definition 16 73 46 15
data base 0 2 5 5
Thus, these phases are associated with these faults:
Phase categories
reguirements definition interface
functional specifications | data definition

design specifications

logic

coding

logic, data handling, database, computation




APPENDIX A

The Studies

[Boehm75] describes a a study of faults in detailed design and coding in projects that modified large exist-
ing FORTRAN programs.

[Rubey75] gives areport on faults made from over a dozen validation efforts, mainly on small commercial
real-time control programs.

[Endres75] gives a description of 512 faults made in the 28th release of the DOS/V'S operating system.
The faults catalogued were those discovered during system test (after developer testing but before
delivery).

[Shooman75] made a study of a 4K instruction control program that interfaced to other parts of the system.
Faults were reported during the test and integration phase.

[Bell76] discusses a requirements document with 8248 requirements and support paragraphs in 2500 pages
for a real-time ballistic missile defense system. There were 972 problems found. System was not opera-
tional at the time of the report; most problems were from reviews.

[Dniestrowski 78] describes a digital flight control / avionics realtime system. 10K machine instructions,
written in a mixture of LTR (a specia high-level language) and assembly. Development process was
waterfall: analysis, detailed design, coding and checkout, test and integration.

In [Herndon78], the application was a real-time ship-to-shore communication system. The code required
30K of storage. Faults were reported by a separate QA organization after module and module integration
tests.

[Weiss79] reports on 143 faults in a project to build a 10 KLOC (excluding comments) hardware architec-
ture ssimulator in Fortran. Faults were reported both during development and after delivery.

[Basili81] reports on a requirements document done as part of a redevelopment of the A-7 operational
flight program. At the time of the report, the document was in the design phase. Document development
took 17 person-months; 11 person-weeks were spent making the 88 changes analysed in the paper.

[Glass81] surveys 100 faults from each of two software systems for military aircraft. The first was 500K
instructions and was built by 150 programmers. The second was 100K instructions and was built by 30
programmers. The faults were gleaned from post-delivery problem reports.

[Potier82] discusses faults found in a family of compilers for the high-order language LTR. More than
1000 faults were collected, the mgjority during the test phase, few post-delivery (maintenance). It also
covers faults from [Lipow79] and [Motley77].

[Ostrand84] reports on 173 faults discovered during the development and system testing of an interactive
special-purpose editor built from 10000 lines of a high-level language and 1000 lines of assembler.

[Basili84a] discusses faults in a 90,000 line Fortran project. The system, to run on an IBM 360, is a
general-purpose program for satellite planning studies. It was characterized by rapidly changing require-
ments and by code and design reuse. Another system, ground support software where "the design is well
understood and the developers have had a reasonable amount of experience with the application”, is used
for comparison.

[Weiss85] and [Basili87] report on projects characterized by high code reuse, established process, experi-
enced first-level managers, and high turnover among programmers. These projects are similar to the
second system of the previous paragraph. [Weiss85] reports on three systems; [Basili87] concentrates on
the second of them.

[Shen85] describes post-rel ease faults in three programs. a metrics counting tool written in Pascal, a com-
piler written in PL/S, and a database system written primarily in assembly languge.
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[Basili85a] studied a project to redesign a satellite ground control system in Ada. There were two design
levels (unit level module specifications, with algorithms, and Ada PDL). Not all of the code was tested,
because no production-quality Ada compiler was ready. There was no system testing. Not all of the design
was implemented. 4 people, with from 9 to O years of experience, participated. They did not know Ada
when the project began; they had "little experience with many of the software engineering practices that
Ada was designed to support". Because the project was an uncompleted training project, only a small
amount of the datais reported here.

[Perry85] is a study of 94 modification requests in a 350,000 line system written in C. The study concen-
trated on interface faults that required modification to a global header file or more than one source file.
[Perry87] extended the study to interface faults that affected a single source file.

[Withrow90] surveyed 362 Ada packages, containing 114,000 lines of code. The average package was 316
lines.

Other studies not surveyed here include [Presson81], [Mendis79], [Litecky76], [Howden81b], and more
detail on TRW studies described above [Thayer78].
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